Shafts - Precision Standards

Accuracy Standards

Circularity / Straightness / L Dimension Accuracy

<table>
<thead>
<tr>
<th>O.D. g6/h5 Shafts (Hardened)</th>
<th>O.D. Tolerance for Shafts (Not Hardened)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L / Y Dimension Tolerance</td>
<td>Straightness</td>
</tr>
<tr>
<td>Over</td>
<td>Less than</td>
</tr>
<tr>
<td>8</td>
<td>0.010</td>
</tr>
<tr>
<td>8</td>
<td>0.012</td>
</tr>
<tr>
<td>10</td>
<td>0.014</td>
</tr>
<tr>
<td>12</td>
<td>0.016</td>
</tr>
<tr>
<td>12</td>
<td>0.018</td>
</tr>
<tr>
<td>12</td>
<td>0.020</td>
</tr>
</tbody>
</table>

Notes on Hardening and Surface Treatment.

- **Reduced Hardness around Machined Areas**
 - Alterations will be applied after base materials are case hardened.
 - In the example below, annealing caused by machining may result in reduced hardness of the machined area + 0/0.02 mm fore and aft.

 ![image of shafts and machining areas](image-url)

- **Surface Treatment Plating Layers**
 - Machining is applied after the base material is surface treated.
 - For the case below, only D area (D10) is treated with hard-chrome plating or low temperature black chrome plating.
 - Hard chrome plating or low temperature black chrome plating will be removed from stepped, tapped and machined areas.

 ![image of surface treatment layers](image-url)

- **Notes on Hardening and Surface Treatment.**
 - Annealing caused by machining may lower hardness of following parts:
 - All threaded shafts
 - All stepped shafts
 - Tapped holes: If M=10-2, RC threads, two tapped holes on ends, hard chrome plated 440C Stainless Steel products.
 - Retaining ring grooves, keyway, tapers, hexagonal socket holes, wrench flats, set screw grooves
 - Keyways, flats, 50-deg. flats, V-grooves
 - Shaft Ends Configurable Type (O/H shape)
 - Hollow Shafts (lateral hole on one side)

 ![image of inner surface hardness variations](image-url)

- **Cross-drilled Hole Dimension Details.**
 - Cross-drilled hole shape may be oval due to machining. Tolerances due to oval shape may lower hardness in the range of 30mm around the machined area.
 - When combined with fine thread alterations, the effect may be greater than the sum of each alteration.

 ![image of cross-drilled holes](image-url)

- **Shafts: Detailed Wrench Flats Dimensions.**
 - Hexagonal Wrench
 - One End Tapped with a Cross-drilled Hole

 ![image of wrench flats dimensions](image-url)

- **Effective Hardened Layer Depth of Shafts (hardened) with Outer Diameter Tolerance g6/h5**

<table>
<thead>
<tr>
<th>Shaft</th>
<th>Hardness</th>
<th>Surface Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Over 0.3</td>
<td>Over 0.3</td>
</tr>
<tr>
<td>40</td>
<td>Over 0.3</td>
<td>Over 0.3</td>
</tr>
<tr>
<td>50</td>
<td>Over 0.3</td>
<td>Over 0.3</td>
</tr>
</tbody>
</table>

About Hollow Shaft Wall Thickness Deviations

Color diameter tolerance g6/h5 Shafts (Hardened) / Color diameter tolerance h6/h5 Shafts (treated with plating)

- Color diameter tolerance g6/h5 Shafts (Hardened)
- Color diameter tolerance h6/h5 Shafts (treated with plating)

When specifying Shafts with thread undercut or adding thread undercut alterations (PC/QC), PC and QC tolerances are the same data below. When D is specified, undercuts will be D + 0.75 x T.

- For Coarse Threads: When Combined with Fine Thread Alterations

 ![image of thread dimensions](image-url)

- Other plain finished edges are:
 - Threaded and tapped shafts
 - Retaining ring grooves, keyway, tapers, hexagonal socket holes, wrench flats, set screw grooves
 - Keyways, flats, 50-deg. flats, V-grooves
 - Fully Plated Shafts will have the plating on the entire shaft except centering holes and tapped sections.

Thread Undercut Dimensions (PC / QC) [Reference Values]

<table>
<thead>
<tr>
<th>Color Diameter Tolerance g6/h5 Shafts (Hardened)</th>
<th>Color Diameter Tolerance h6/h5 Shafts (treated with plating)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

- An hollow shaft interior surfaces are not treated with plating, it may rust.

Shaft Material / Hardness / Surface Treatment

- Various Shafts - Precision Standards

 ![image of shaft material and hardness](image-url)

Straitness Measuring Method

- Shafts are supported on 10 runs and turned 0.2 degrees to measure straightness. CC or measured radius is defined as the straightness.

- **Shaft Ends are supported on 10 runs and turned 0.2 degrees to measure straightness. CC or measured radius is defined as the straightness.**

- **Straightness**

 ![image of shaft straightness](image-url)

- **Straightness Measuring Method**

 ![image of straightness measuring method](image-url)

- ** Shaft Ends are supported on 10 runs and turned 0.2 degrees to measure straightness. CC or measured radius is defined as the straightness.**

- **Straightness Measuring Method**

 ![image of straightness measuring method](image-url)