Slide Rails Precautions for Use

Installation Posture
- Install slide rails to be parallel to each other and perpendicular to vertical surface.
- Load ratings and performance will diminish sharply when rails are not properly installed. For horizontal installation, the target value of load rating is 25% (Reference Value).
- For horizontal installation, if load more than the above reference value is applied, or if center of gravity is put over positions separated from rail center, inner rails may fall off outer rails. Please test and confirm this issue before using the product.

Installation Posture Examples
- Slide rails are not vertically installed.
- Slide rails are not horizontally aligned.
- Applying loads on one side when mounted horizontally.

Load Rating Definition
- Rated load is a static load at the center of extended rail on drawer side.
- Load ratings and performance will diminish sharply when rails are not properly installed. For horizontal installation, the target value of load rating is 25% (Reference Value).

Precaution about other operations
- Strong shocks while opening / closing slide rails will cause damage. Installation of stopper or buffer on the housing is recommended to protect slide rails from strong shocks.
- Use in applications where guides are subjected to momentary load is not recommended.

Mounting Method
- On areas containing conflict between rails and mounting holes, move access holes over mounting holes before mounting screws.
- Use M3 Flat Head Screws to mount rails.
- Use M3 Flat Head Screws to mount rails.
- The rails can not be pulled apart.
- The rails can not be pulled apart.

Ball Retainer Creep phenomenon
- On slide rails, warpage due to machining operations prevents Ball Track Surface from forming into fully circled arch. Therefore, contacts between outer / inner rails and balls variously alter, and affect travel distance of these balls. Ball misalignment effect when the said travel distance changes is called Ball Retainer Creep phenomenon.
- If this misalignment occurs, more force than in normal sliding operations may be required to correct the misalignment.
- If Ball Retainer Creep phenomenon occurs, softly pull the rails back to the fully open position to correct misalignment.
- If the rails are repeatedly slid without being fully opened, the previous misalignment is not corrected, and more significant misalignment may occur.
- If unbalanced load is applied due to location deviation of grips toward one side slide rail, Ball Retainer Creep phenomenon may occur. Be careful about this upon designing.

Ball Retainer Creep phenomenon diagram
- One-point contact
- 2-point contact
- One and two indicate outer rail mounting hole
- One and two indicate outer rail mounting hole

Slide Rails at the time of ball retainer creep
- Before being pulled out
- After being pulled out
- Inner Rail Retainer Outer Rail

Retainers reach their left ends of the outer rails, but misalignment prevents the product from becoming the full stroke state.

In order to resolve Ball Retainer Creep phenomenon, strongly slide inner rails to put the product in full stroke state.

Feature: The rails are made of aluminum alloy.

Light Load, Two-Step Telescopic Slide Rails

Light Load, Three-Step Telescopic Slide Rail

Part Number Rail Length Stroke A B C D F Load Rating (N/2 pcs.) Unit Price (N/2 pcs.) Volume Discount Rate Unit Price (N/2 pcs.) Volume Discount Rate

Part Number Rail Length Stroke A B C D Load Rating (N/2 pcs.) Unit Price (N/2 pcs.) Volume Discount Rate Unit Price (N/2 pcs.) Volume Discount Rate

Part Number Rail Length Stroke A B C D Load Rating (N/2 pcs.) Unit Price (N/2 pcs.) Volume Discount Rate Unit Price (N/2 pcs.) Volume Discount Rate