Rotary Shafts

Product Name
- Rotary Shafts – Straight
- Rotary Shafts – Straight with Keyways
- Rotary Shafts – Both Ends Double Stepped
- Rotary Shafts – Straight Rotary Shafts – Straight with Keyways
- Retaining Ring Grooves on Both Ends
- One End Stepped and Threaded
- Both Ends Stepped and Threaded
- Retaining Ring Grooves on Both Ends
- One End Stepped, Both Ends Tapped
- Both Ends Stepped
- One End Stepped with Retaining Ring Groove
- One End Stepped, Both Ends Threaded
- Both Ends Stepped, One End Threaded

Shaft Diameter
- 852 854 856 858
- 886 888 888 890
- 878 880 882 884
- 862 864 866 868

Additional Information
- Retaining Ring Grooves on Both Ends
- One End Stepped, Both Ends Threaded
- Both Ends Stepped, One End Threaded
- Rotary Shafts – Straight
- Rotary Shafts – Straight with Keyways
- Rotary Shafts – Both Ends Double Stepped
- Hollow Rotary Shafts – Straight
- Shaft for Tension – Pull – Retaining Ring Groove

Accuracy Standards of Rotary Shafts & Driving Shafts

Coarseness and Straightness
- Values in () are for driving shafts

Concentricity, Perpendicularity
- Straightness of sizes Ø2, Ø4, Ø8, Ø10, Ø12, Ø14, Ø16, Ø18, Ø20, Ø22, Ø24, Ø25, Ø26, Ø28, Ø30, Ø31, Ø32, Ø33, Ø34, Ø35, Ø36, Ø37, Ø38, Ø39, Ø40, Ø41, Ø42, Ø43, Ø44, Ø45, Ø46, Ø47

Tolerances of L, Y & Other Dimensions
- Values in () are for driving shafts

Detailed Dimensions for Keyway & Threaded Relief of Rotary Shafts & Driving Shafts

Shaft Diameter
- 852 854 856 858
- 886 888 888 890
- 878 880 882 884
- 862 864 866 868

Rotary Shafts Thread Undercut (PC/Q) Dimensions (Reference)

When Thread undercut machining (PC/Q) is specified, PC/Q dimension is as shown in the table below. As for the PC and QC dimensions for the Fine Thread alteration (PC/QC MS), also refer to the tables below.

Coarse Thread

<table>
<thead>
<tr>
<th>Shaft Diameter</th>
<th>P (mm)</th>
<th>FC (+)</th>
<th>PC (+)</th>
<th>QC (+)</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>+0.25</td>
</tr>
<tr>
<td>8</td>
<td>0.65</td>
<td>0.75</td>
<td>0.85</td>
<td>0.95</td>
<td>+0.25</td>
</tr>
<tr>
<td>10</td>
<td>0.85</td>
<td>1.00</td>
<td>1.15</td>
<td>1.30</td>
<td>+0.25</td>
</tr>
<tr>
<td>12</td>
<td>1.15</td>
<td>1.30</td>
<td>1.60</td>
<td>1.85</td>
<td>+0.25</td>
</tr>
<tr>
<td>14</td>
<td>1.50</td>
<td>1.70</td>
<td>2.10</td>
<td>2.50</td>
<td>+0.25</td>
</tr>
<tr>
<td>16</td>
<td>2.00</td>
<td>2.25</td>
<td>2.75</td>
<td>3.30</td>
<td>+0.25</td>
</tr>
</tbody>
</table>

Combined with Fine Thread Alteration

<table>
<thead>
<tr>
<th>Shaft Diameter</th>
<th>P (mm)</th>
<th>FC (+)</th>
<th>PC (+)</th>
<th>QC (+)</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.15</td>
<td>0.18</td>
<td>0.25</td>
<td>0.35</td>
<td>+0.15</td>
</tr>
<tr>
<td>8</td>
<td>0.20</td>
<td>0.25</td>
<td>0.35</td>
<td>0.50</td>
<td>+0.15</td>
</tr>
<tr>
<td>10</td>
<td>0.25</td>
<td>0.32</td>
<td>0.45</td>
<td>0.65</td>
<td>+0.15</td>
</tr>
<tr>
<td>12</td>
<td>0.32</td>
<td>0.40</td>
<td>0.60</td>
<td>0.90</td>
<td>+0.15</td>
</tr>
<tr>
<td>14</td>
<td>0.40</td>
<td>0.50</td>
<td>0.80</td>
<td>1.20</td>
<td>+0.15</td>
</tr>
<tr>
<td>16</td>
<td>0.50</td>
<td>0.60</td>
<td>1.00</td>
<td>1.50</td>
<td>+0.15</td>
</tr>
</tbody>
</table>

Check out misumiusa.com for the most current pricing and lead time.

There’s more on the web: misumiusa.com