Couplings

Plastic / Short Plastic

Couplings are economical couplings for low torque applications. Suitable for encoders and potentiometers where little torque is required.

Features:
- Economical couplings for low torque applications.
- Suitable for encoders and potentiometers where little torque is required.
- The couplings have been proven with heat-run tests that show 10 years of service life.
- Avoid rough handling. Do not apply excessive bending and torsional forces during installation.
- The couplings are highly reliable in light loading applications.
- The tightening torque should not exceed the allowable range (Resin material breaks if the tightening torque exceeds the allowable range)

Tables:

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Type No.</th>
<th>D</th>
<th>L</th>
<th>E</th>
<th>P</th>
<th>Diameter</th>
<th>Length</th>
<th>Tightening Torque (N·m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCJN</td>
<td>9</td>
<td>2.5</td>
<td>1.5</td>
<td>2</td>
<td>1.6</td>
<td>3.0</td>
<td>4.0</td>
<td>1.0 x 10^-7 ±0.3</td>
</tr>
<tr>
<td>MCJN</td>
<td>10</td>
<td>2.5</td>
<td>1.5</td>
<td>2</td>
<td>1.6</td>
<td>3.0</td>
<td>4.0</td>
<td>1.0 x 10^-7 ±0.3</td>
</tr>
<tr>
<td>MCJSN</td>
<td>14</td>
<td>2.5</td>
<td>1.5</td>
<td>2</td>
<td>1.6</td>
<td>3.0</td>
<td>4.0</td>
<td>1.0 x 10^-7 ±0.3</td>
</tr>
<tr>
<td>MCJSN</td>
<td>16</td>
<td>2.5</td>
<td>1.5</td>
<td>2</td>
<td>1.6</td>
<td>3.0</td>
<td>4.0</td>
<td>1.0 x 10^-7 ±0.3</td>
</tr>
<tr>
<td>MCJSN</td>
<td>18</td>
<td>2.5</td>
<td>1.5</td>
<td>2</td>
<td>1.6</td>
<td>3.0</td>
<td>4.0</td>
<td>1.0 x 10^-7 ±0.3</td>
</tr>
</tbody>
</table>

Notes:
- **Operating Temperatures:** -20–100°C
- The lateral angle and axial misalignment values shown are for each coupling individually. When more than one misalignment is occurring simultaneously, the allowable maximum values of each will be reduced by 1/2.
- For the selection criteria and alignment procedures, see RFS91, 108B.

Universal Joints

Set Pin

How to Select

1. **Condition Variables (Formulæ)**
 - Calculation Condition Variable = Relational Speed x Angle Factor
 - **Relational Speed** = Angle Factor x Allowable Speed

2. **Condition Variables = Allowable Condition Variable**
 - Speed Factor = Relational Speed / Allowable Speed

Angle Factor Table

<table>
<thead>
<tr>
<th>Condition</th>
<th>Angle (º)</th>
<th>Speed Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°</td>
<td>10°</td>
<td>1.00</td>
</tr>
<tr>
<td>15°</td>
<td>15°</td>
<td>1.00</td>
</tr>
<tr>
<td>20°</td>
<td>15°</td>
<td>1.00</td>
</tr>
<tr>
<td>25°</td>
<td>15°</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Rubber Covers

- **UNCA (Single)**
 - *No rubber covers are available for d=6.

High-Strength Dowel Pins

1. **Material:** SCM415 Alloy Steel (JIS) is carburized and ground to an H8 tolerance.
2. **Effective section is shouldered as shown and lightly engaged only on one side.
3. **Small misalignment is allowed on the mating side hole, but should be finished to an H8 tolerance.

How to Handle Ring Spring

1. **Springs may lose its tension if reused.**
2. **Procedure.**

Check out misumiusa.com for the most current pricing and lead time.