Springs / Shock Absorbers / Gas Springs

Simple Force Calculation Method (Reference)

Formula of Spring Constant:

\[k = \frac{F}{x} \]

where:

- \(k \) = spring constant (N/mm)
- \(F \) = force (N)
- \(x \) = deflection (mm)

Deflection Formula:

\[x = \frac{F}{k} \]

Torque (Nmm/deg):

\[T = k \times \theta \]

where:

- \(T \) = torque (Nmm)
- \(\theta \) = angle (deg)

Spring Constant (Torque):

\[k = \frac{T}{\theta} \]

Deflection (Torque):

\[x = \frac{T}{k \times \theta} \]

Design Considerations:

- Ensure proper hole size to accommodate the spring's deflection and prevent bending or stress concentrations.
- Consider the material properties and surface finish to enhance durability and performance.
- Verify the clearance between the spring and surrounding components to prevent interference.

Flat Springs

Material: 304 Stainless Steel

Common Types:

- IBNW
- IBNS

- **Design Guidelines:**
 - Due to low temperature annealing, surface color is golden brown.
 - Deflection: 0.2 ±0.02
 - Length: 120 – 200
 - Plate thickness: 0.1 ±0.005

Part Number Example:

- IBNW C - T0.2 - H12 - L120 - A3.5 - X5 - P10

Torsion Springs

Right Winding 90° / Left Winding 180°

Arm Angle:

- 90°
- 135°
- 180°

Part Number Example:

- UA90R Right Winding
- UA90L Left Winding

Design Considerations:

- Hole size must accommodate deflection, and bends should be 3 mm or more.
- Arm angle should be 1.5 mm or more.
- The hole and the edge should be 1.5 mm or more.

Spring Constant (Torque):

\[k = \frac{T}{\theta} \]

where:

- \(k \) = spring constant (Nmm/deg)
- \(T \) = torque (Nmm)
- \(\theta \) = angle (deg)

There's more on the web: misumiusa.com

Check out misumiusa.com for the most current pricing and lead time.

2524

2525